WD Black SN750 NVMe Heatsink SSD Review: Speedy And Cool

Article Index

WD Black SN750 Heatsink SSD - Test Setup, IOMeter, And Compression Tests

Our Test Methods: Under each test condition, the SSDs tested here were installed as secondary volumes in our testbed, with a separate drive used for the OS and benchmark installations. Out testbed's motherboard was updated with the latest BIOS available at the time of publication and AHCI mode was enabled for the host drive. The SSDs were secure erased prior to testing (when applicable), and left blank without partitions for some tests, while others required them to be partitioned and formatted, as is the case with the ATTO, PCMark, and CrystalDiskMark tests. Windows firewall, automatic updates, and screen savers were all disabled before testing and Windows 10 Quiet Hours / Focus Assist was enabled.

wd black installed

In all test runs, we rebooted the system, ensured all temp and prefetch data was purged, waited several minutes for drive activity to settle, and for the system to reach an idle state before invoking a test. All of the drives featured here were tested with their own NVMe drivers installed where possible / available, but the default Windows 10 NVMe driver was used when a proprietary driver was unavailable. Also note, we have completely revamped our test bed, so the numbers shown in this review aren’t comparable to previous articles. All of the drives here have also been updated to their latest firmware and drivers where applicable.
HotHardware Test System
Intel Core i7 and SSD Powered
Processor -

Motherboard -


Video Card -

Memory -

Audio -

Storage -

Intel Core i9-9900K

Gigabyte Z390 Aorus Master
(Z390 Chipset, AHCI Enabled)

Intel HD 630

16GB G.SKILL DDR4-2666

Integrated on board

Corsair Force GT (OS Drive)
Samsung SSD 970 EVO (1TB)
Samsung SSD 970 EVO Plus (1TB)
Intel SSD 760P (512GB)
Adata XPG SX8200 Pro (512GB)
WD Blue SN500 (500GB)
WD Black SN750 (1TB)
OS -

Chipset Drivers -

DirectX -

Benchmarks -
Windows 10 Pro x64 (1809)

Intel 10.1.17.86, iRST 17.0.0.1072

DirectX 12

IOMeter 1.1
HD Tune v5.70
ATTO v4.00.0f2
AS SSD
CrystalDiskMark v6.0.2 x64
PCMark Storage Bench 2.0
SiSoftware SANDRA
IOMeter
I/O Subsystem Measurement Tool
As we've noted in previous SSD articles, though IOMeter is clearly a well-respected industry standard drive benchmark, we're not completely comfortable with it for testing SSDs. The fact of the matter is, though our results with IOMeter appear to scale, it is debatable whether or not certain access patterns, as they are presented to and measured on an SSD, actually provide a valid example of real-world performance. The access patterns we tested may not reflect your particular workload, for example. That said, we do think IOMeter is a reliable gauge for relative available throughput with a given storage solution. In addition, there are certain higher-end workloads you can place on a drive with IOMeter, that you can't with most other storage benchmark tools available currently.

In the following tables, we're showing two sets of access patterns; a custom Workstation pattern, with an 8K transfer size, consisting of 80% reads (20% writes) and 80% random (20% sequential) access and a 4K access pattern with a 4K transfer size, comprised of 67% reads (33% writes) and 100% random access. Queue depths from 1 to 32 were tested, though keep in mind, most consumer workloads usually reside at low queue depths...

io1


io2

The WD Black SN750 finishes right about in the middle of the pack with both of the access patterns we tested in IOMeter. With the random 4K workload, the WD Black SN750 competes with the AData drive, but ends up trailing at the higher queue depths. Throw some sequential transfers in the mix, however, and the scales tip in favor of the WD Black SN750. The Samsung drives clearly lead here, though.

io3


io4


The actual latency and bandwidth numbers are in-line with the drives' IOPS scores. The WD Black SN750 and AData drives trade blows, while the Samsung drives finish at the top of the heap.

AS SSD Compression Benchmark
Bring Your Translator: http://bit.ly/aRx11n

Next up we ran the Compression Benchmark built-into AS SSD, an SSD specific benchmark being developed by Alex Intelligent Software. This test is interesting because it uses a mix of compressible and non-compressible data and outputs both Read and Write throughput of the drive. We only graphed a small fraction of the data (1% compressible, 50% compressible, and 100% compressible), but the trend is representative of the benchmark’s complete results.

as ss1


as ss2

The compressibility of the data being transferred across the WD Black SN750 has no impact on performance. It also proves to be the highest performing SSD overall in this benchmark. In the read test, all of the high-end drives are tightly grouped. In the write test, however, the WD Black SN750 is able to eek out a victory.

Related content

Comments

Show comments blog comments powered by Disqus