Kingston HyperX Predator M.2 PCIe SSD Review
Test Setup, IOMeter 1.1 RC
Our Test Methodologies: Under each test condition, the Solid State Drives tested here were installed as secondary volumes in our testbed, with a separate drive used for the OS and benchmark installations. Out testbed's motherboard was updated with the latest BIOS available as of press time and AHCI (or RAID) mode was enabled. The SSDs were secure erased prior to testing, and left blank without partitions for some tests, while others required them to be partitioned and formatted, as is the case with our ATTO, PCMark 7, and CrystalDiskMark benchmark tests. Windows firewall, automatic updates and screen savers were all disabled before testing. In all test runs, we rebooted the system, ensured all temp and prefetch data was purged, and waited several minutes for drive activity to settle and for the system to reach an idle state before invoking a test.
|
Processor Motherboard - Video Card - Memory - Audio - Storage - |
Hardware Used: Intel Core i7-4770K MSI Z97 Gaming 7 (Z97 Chipset, AHCI Enabled) Intel HD 4600 8GB G.SKILL DDR3-1600 Integrated on board Corsair Force GT (OS Drive) Samsung SSD 850 Pro (128GB, 1TB) Kingston HyperX PCIe SSD (480GB) OCZ Vertex 460 (240GB) Plextor M6e Plextor M6e Black Edition |
OS - Chipset Drivers - DirectX - Video Drivers - |
Relevant Software: Windows 8.1 Pro x64 Intel 9.4.0.1027, iRST 12.8.0.1016 DirectX 11 Intel HD 10.18.10.33 Benchmarks Used: IOMeter 1.1.0 RC HD Tune v5.50 ATTO v2.47 AS SSD CrystalDiskMark v3.0.3 x64 PCMark 7 SiSoftware Sandra 2014 |
|
As we've noted in previous SSD articles, though IOMeter is clearly a well-respected industry standard drive benchmark, we're not completely comfortable with it for testing SSDs. The fact of the matter is, though our actual results with IOMeter appear to scale properly, it is debatable whether or not certain access patterns, as they are presented to and measured on an SSD, actually provide a valid example of real-world performance for the average end user. That said, we do think IOMeter is a reliable gauge for relative available throughput within a given storage solution. In addition there are certain higher-end workloads you can place on a drive with IOMeter, that you can't with most other storage benchmark tools available currently.
In the following tables, we're showing two sets of access patterns; our custom Workstation pattern, with an 8K transfer size, 80% reads (20% writes) and 80% random (20% sequential) access and a 4K access pattern with a 4K transfer size, comprised of 67% reads (34% writes) and 100% random access.
The Kingston HyperX Predator PCIe SSD finished just behind the Plextor M6e drives with the 100% random 4K workload, but it jumped out to a huge lead over the other drives with our 8K access pattern, which tosses in some sequential transfers.
The bandwidth differences with the two workloads we tested are readily apparent. With 4K transfers the HyperX Predator PCIe SSD just misses the mark set by Plextor's offering, but it smokes everything else in the 8K / 80 / 80 test.