WD Black NVMe SSD Review: Affordable With Great Write Speeds

Article Index

WD Black NVMe SSD: Test Setup, IOMeter, And Compression Tests

Our Test Methods: Under each test condition, the SSDs tested here were installed as secondary volumes in our testbed, with a separate drive used for the OS and benchmark installations. Our testbed's motherboard was updated with the latest BIOS available at the time of publication and AHCI mode was enabled for the host drive.

wd black nvme 7
The SSDs were secure erased prior to testing (when applicable), and left blank without partitions for some tests, while others required them to be partitioned and formatted, as is the case with the ATTO, PCMark, and CrystalDiskMark benchmark tests. Windows firewall, automatic updates, and screen savers were all disabled before testing and Windows 10 Quiet Hours were enabled. In all test runs, we rebooted the system, ensured all temp and prefetch data was purged, waited several minutes for drive activity to settle and for the system to reach an idle state before invoking a test. Also note that all of the drives featured here were tested with their own drivers installed where avaialble -- not the default Windows 10 NVMe driver.


HotHardware Test System
Intel Core i7 and SSD Powered
Processor -

Motherboard -


Video Card -

Memory -

Audio -

Storage -

Intel Core i7-8700K

Gigabyte Z370 Ultra Gaming
(Z370 Chipset, AHCI Enabled)

Intel HD 630

16GB G.SKILL DDR4-2666

Integrated on board

Corsair Force GT (OS Drive)
Intel Optane SSD 800p (118GB)
Samsung SSD 970 Pro (512GB)
Samsung SSD 970 EVO (1TB)
Samsung SSD 960 Pro (1TB)
OCZ RD400 (1TB)
WD Black NVMe SSD (1TB)
OS -

Chipset Drivers -

DirectX -

Benchmarks -
Windows 10 Pro x64

Intel 10.1.1.44, iRST 15.8.1.1007

DirectX 12

IOMeter 1.1
HD Tune v5.70
ATTO v3.05
AS SSD
CrystalDiskMark v6.0.0 x64
PCMark Storage Bench 2.0
SiSoftware SANDRA
IOMeter
I/O Subsystem Measurement Tool
As we've noted in previous SSD articles, though IOMeter is clearly a well-respected industry standard drive benchmark, we're not completely comfortable with it for testing SSDs. The fact of the matter is, though our results with IOMeter appear to scale, it is debatable whether or not certain access patterns, as they are presented to and measured on an SSD, actually provide a valid example of real-world performance. The access patterns we tested may not reflect your particular workload, for example. That said, we do think IOMeter is a reliable gauge for relative available throughput with a given storage solution. In addition there are certain higher-end workloads you can place on a drive with IOMeter, that you can't with most other storage benchmark tools available currently.

In the following tables, we're showing two sets of access patterns; a custom Workstation pattern, with an 8K transfer size, consisting of 80% reads (20% writes) and 80% random (20% sequential) access and a 4K access pattern with a 4K transfer size, comprised of 67% reads (33% writes) and 100% random access. Queue depths from 1 to 32 were tested, though keep in mind, most consumer workloads usually reside at low queue depths...

iops1


iops2

At QD1, the WD Black NVMe performed about in the middle of pack, but ultimately ended up trailing all but the RD400 as the queue depth increases with 4K transfers. In the 8K/80/80 test, which incorporates some sequential transfers, the WD Black NVMe SSD maintains its position about in the middle of the pack until it hits the higher queue depths where it actually nudges up a couple of spots.
iops3

iops4

If we focus on available bandwidth and latency -- again, at QD1 -- the WD Black NVMe SSD lands about in the middle of the pack as you would expect, though latency is right in line with Samsung's latest drives.

AS SSD Compression Benchmark
Bring Your Translator: http://bit.ly/aRx11n

Next up we ran the Compression Benchmark built-into AS SSD, an SSD specific benchmark being developed by Alex Intelligent Software. This test is interesting because it uses a mix of compressible and non-compressible data and outputs both Read and Write throughput of the drive. We only graphed a small fraction of the data (1% compressible, 50% compressible, and 100% compressible), but the trend is representative of the benchmark’s complete results.

as1


as2

The compressibility of data being transferred across the WD Black NVMe SSD has no impact on performance and the drive crushes these workloads. The WD Black NVMe SSD was competitive with the fastest drives in the read test and led the pack in writes.

Image gallery

Related content

Comments

Show comments blog comments powered by Disqus