The Buggy Future Of Computer Chips
When the researchers scoped the scales, they noticed something strange: No matter the angle of viewing, the scales always appeared in the same shade of green.
That's unusual for iridescent surfaces, which derive their color from light refracted through semi-transparent layers. Further study revealed that the quality came from the scales' molecular arrangement, which had the same pattern as the atoms of carbon in a diamond.
Diamonds themselves are too dense to serve as photonic crystals, but researchers long ago identified their configuration as perfectly suited for manipulating light in a three-dimensional space.
"You can take the light, criss-cross it and it doesn't interfere. It allows you to build more complex and compact architectures," said Paul Braun, a University of Illinois at Urbana-Champaign photonic crystal specialist. The crystals' transmission purity would also eliminate waste heat generated by traditional electron-based circuits. That heat is a limiting factor on traditional microchip capacities.
So perhaps in the future you'll be able to put a big horseshoe magnet on the side of your computer tower, but you won't be able to shine a flashlight into the case. OK. As always: faster, please.