Intel & Micron Unveil 128Gb, 20nm NAND Flash Device - HotHardware
Intel & Micron Unveil 128Gb, 20nm NAND Flash Device

Intel & Micron Unveil 128Gb, 20nm NAND Flash Device

Intel and Micron’s 64Gb, 20nm NAND flash? Old news. It’s now in mass production. Today, Micron revealed the two companies’ hottest new collaboration, a 128Gb, 20nm NAND flash device. The little thing crams 1Tb of storage onto eight die for a total package that’s roughly the size of a fingernail.

The new device, which is designed to provide flash storage to mobile devices and high-capacity SSDs alike, can hit 333 megatransfers per second (MT/s).

The dramatic increase in density is enabled by the planar cell structure technology used on the 20nm NAND, which gets around scaling issues by incorporating a Hi-K/metal gate stack.



Intel, Micron Extend NAND Flash Technology Leadership With Introduction of World's First 128Gb NAND Device and Mass Production of 64Gb 20nm NAND
New 128Gb Device Ideal for Small Form Factor Tablets, Smartphones, SSDs and High-Performance Compute Devices

SANTA CLARA, Calif. and BOISE, Idaho, Dec. 6, 2011 (GLOBE NEWSWIRE) -- Intel Corporation and Micron Technology, Inc., (Nasdaq:MU) today announced a new benchmark in NAND flash technology — the world's first 20 nanometer (nm), 128 gigabit (Gb), multilevel-cell (MLC) device. The companies also announced mass production of their 64Gb 20nm NAND, which further extends the companies' leadership in NAND process technology.

Developed through Intel and Micron's joint-development venture, IM Flash Technologies (IMFT), the new 20nm monolithic 128Gb device is the first in the industry to enable a terabit (Tb) of data storage in a fingertip-size package by using just eight die. It also provides twice the storage capacity and performance of the companies' existing 20nm 64Gb NAND device. The 128Gb device meets the high-speed ONFI 3.0 specification to achieve speeds of 333 megatransfers per second (MT/s), providing customers with a more cost-effective solid-state storage solution for today's slim, sleek product designs, including tablets, smartphones and high-capacity solid-state drives (SSDs.)

"As portable devices get smaller and sleeker, and server demands increase, our customers look to Micron for innovative new storage technologies and system solutions that meet these challenges," said Glen Hawk, vice president of Micron's NAND Solutions Group. "Our collaboration with Intel continues to deliver leading NAND technologies and expertise that are critical to building those systems."

The companies also revealed that the key to their success with 20nm process technology is due to an innovative new cell structure that enables more aggressive cell scaling than conventional architectures. Their 20nm NAND uses a planar cell structure — the first in the industry — to overcome the inherent difficulties that accompany advanced process technology, enabling performance and reliability on par with the previous generation. The planar cell structure successfully breaks the scaling constraints of the standard NAND floating gate cell by integrating the first Hi-K/metal gate stack on NAND production.

"It is gratifying to see the continued NAND leadership from the Intel-Micron joint development with yet more firsts as our manufacturing teams deliver these high-density, low-cost, compute-quality 20nm NAND devices," said Rob Crooke, Intel vice president and general manager of Intel's Non-Volatile Memory Solutions Group. "Through the utilization of planar cell structure and Hi-K/Metal gate stack, IMFT continues to advance the technological capabilities of our NAND flash memory solutions to enable exciting new products, services and form factors."

The demand for high-capacity NAND flash devices is driven by three interconnected market trends: data storage growth, the shift to the cloud and the proliferation of portable devices. As digital content continues to grow, users expect that data to be available across a multitude of devices, all synchronized via the cloud. To effectively stream data, servers require high-performance, high-capacity storage that NAND delivers, and storage in mobile devices has consistently grown with increased access to data. High-definition video is one example of an application that requires high-capacity storage, since attempting to stream this type of data can create a poor user experience. These developments create great opportunities for high-performance, small-footprint storage, both in the mobile devices that consume the content and the storage servers that deliver it.

Intel and Micron noted that the December production ramp of their 20nm 64Gb NAND flash product will enable a rapid transition to the 128Gb device in 2012. Samples of the 128Gb device will be available in January, closely followed by mass production in the first half of 2012. Achievement of this milestone will further enable greater densities and overall fab output, while also helping the companies' development teams cultivate the expertise required to design complex storage solutions and refine future technologies.
0
+ -

Neat, now if only they can do so with a low price range xD.

0
+ -

that is one beastly little thing.

+1
+ -

It doesn't mean a thing unless it's available to us to use and for a decent price.

So I'll take a 4TB SSD drive with this flash memory inside of it please. In fact, I want 12 of them.

0
+ -

Each decrease in manufacturing size brings with it a reduction of cost, as well as an increase in capacity. After all it means they can make more chips with the same amount of resources and fit more in the same amount of space.

Though there are other factors for final price, but SSDs are definitely well on their way to becoming increasing more affordable and more dominant in the market.

0
+ -

Just think of the next generation of flash drives and SSDs using this new chip.

+1
+ -

This will also make mobile storage go way up too.

0
+ -

Amazing. That's just mind blowing.

+1
+ -

Stick a bunch of those on a PCIE card and I will gladly beta test the card :P lol. Pretty amazing what they are able to do reducing the size of these components all the time.

0
+ -

What I want to know is how many write cycles it can handle before going bad. That number has been dropping with every die shrink.

0
+ -

The new technology is amazing, and helpful, but I wish they would focus a little bit more on storage size. This solid state stuff has been pretty expensive for awhile now.

0
+ -

Holy crap thats a large capacity for a small thing

Login or Register to Comment
Post a Comment
Username:   Password: